Stat 201 – Spring 2024

Topics to study for Exam 2

Chapter 7: Linear Regression

- Four conditions for valid regression
 - Quantitative variables
 - Straight-enough condition
 - No outlier condition
 - "Does the plot thicken?" condition
- What is special about the regression ("least squares") line compared to any other line drawn through the data
- Given JMP output, write out the regression model with actual variable names
- Interpret regression coefficients (b₀ and b₁)
- Know when b₀ has no logical interpretation
- Know the difference between y and y-hat
- Be able to use a regression equation to make an estimate of y for a given value of x
- Be able to calculate and interpret a residual
- Be able to interpret a residuals plot and spot problems
- Be able to find r from r² or vice versa
 - Taking care of the direction of the slope
- Interpretation of R-square as the percentage of the variation in y associated with the variation in x
- Don't interpret the relationship to imply cause and effect

Chapter 8: Regression Wisdom

- Understand extrapolation
 - Dangers
 - Valid only when one can safely assume that the model will hold outside the range of the data into the region where the extrapolation is desired
- Groups in residual plots
- Correlation is not causation
- Lurking variable and how they explain a correlation that is not due to causation
- Identify outliers from a scatter plot

Stat 201 – Spring 2024

Topics to study for Exam 2

Chapter 10: Sample surveys

- Populations and samples
- Parameters and statistics
- Representative samples
- Sampling frame
- Nonrandom (Bad) samples
 - Voluntary samples
 - Convenience samples
- Randomized samples
 - Simple random samples
 - Stratified random samples
 - Cluster random samples
 - Systematic samples
 - Multistage samples
- Sampling biases
 - Nonresponse
 - Undercoverage
 - Response bias

Chapter 12: From Randomness to Probability

- Formal definition of probabilities
 - o Probabilities have to be between 0 and 1 inclusive
 - What it means to have a probability of 0 or 1
 - Recognize valid and invalid assignments of probabilities
- Law of large numbers
- Know that "disjoint" is the same as "mutually exclusive" and means that if one event happens, the other can't happen
- Know what it means for two events to be independent
- Know that disjoint events are never independent (and, independent events are never disjoint)
- Understand the addition rule and necessary conditions for using this rule
- Understand the multiplication rule and necessary conditions for using this rule
- Understand complement rule and be able to apply it [P(not A) = 1 P(A)]
 - Recognize that when the words "probability of at least one...." are used, this typically involves using this rule
- State whether or not it would be reasonable to assume a set of events is independent or disjoint

Stat 201 – Spring 2024

Topics to study for Exam 2

Chapter 13: Sampling Distributions for proportions

- Know the difference between a population and a sample
- Know what p̂ and p represent
- Knowing how to identify a "success"
- Have a general understanding of sampling distributions for a proportion
- Know how to find the mean and standard deviation of the sampling distribution of \hat{p} , given the known population proportion, p, and the sample size, n.
- Know when the shape of a sampling distribution of \hat{p} is approximately Normal
- Independence Assumption or as a practical approximation
 - Randomization
 - o 10% condition
 - Success/Failure condition
- Be able to use the 68-95-99.7 rule to find the approximate probability of a specific \hat{p} (or less) from a normally distributed sampling distribution of \hat{p} .

Chapter 14: Sampling Distributions for Means

- Know the difference between a population and a sample
- Have a general understanding of sampling distributions for a mean
- Know what \bar{y} and μ represent
- Have a general understanding of the Central Limit Theorem
- Know assumptions for CLT when the parameters (μ and σ) are known
 - o Independence condition or as a practical approximation
 - Randomization condition
 - 10% condition
 - Large enough sample condition
- Know the difference between two distributions
 - Real-world distribution of the sample that one might see in a histogram
 - Math-world distribution of a sample statistic such as the sample mean
- Given the mean and standard deviation of a population, be able to calculate the mean and standard deviation of the sampling distribution of \bar{y} (given the sample size n)