Topics to study for Exam 3

Chapter 13: Confidence intervals for proportions

- Know the difference between a population and a sample
- Know what \hat{p} and p represent
- Knowing how to identify a "success"
- Independence Assumption or as a practical approximation
 - o Randomization
 - o 10% condition
 - o Success/Failure condition
- Be able to use the 68-95-99.7 rule to find the approximate probability of a specific \hat{p} (or less) from a normally distributed sampling distribution of \hat{p} .
- Meaning of confidence
- Conditions to check for a confidence interval
 - Randomization
 - o 10% condition
 - Success/Failure condition
- Understanding the Margin of Error
- How standard error is related to the standard deviation for proportions
- How to calculate the standard error for proportions
- Critical values
 - Being able to read the output from this on-line calculator https://adamspannbauer.github.io/stats-applets/#/normal
- Being able to calculate a confidence interval with the aid of the formula sheet
- Trade-off between certainty and precision in confidence intervals
- Interpreting Data Analysis output

Topics to study for Exam 3

Chapter 14: Confidence Intervals for Means

- Know the difference between a population and a sample
- Know what \bar{y} and μ represent
- Have a general understanding of the Central Limit Theorem
- Know assumptions for CLT when the parameters (μ and σ) are known
 - o Independence condition or as a practical approximation
 - Randomization condition
 - 10% condition
 - Large enough sample condition
- Know the difference between two distributions
 - o Real-world distribution of the sample that one might see in a histogram
 - o Math-world distribution of a sample statistic such as the sample mean
- Given the mean and standard deviation of a population, be able to calculate the mean and standard deviation of the sampling distribution of \bar{y} (given the sample size n)
- Know assumptions for CLT when the parameters (μ and σ) are unknown
 - Randomization
 - o 10% condition
 - Nearly normal condition
- Understand the reason for using the t-Distribution
- Understand the characteristics of the t-Distribution
 - Similarities/differences to the Normal Distribution
 - Understand degrees of freedom as an additional parameter to manage
 - How to calculate degrees of freedom for a confidence interval of a single mean
- Understanding the Margin of Error of a confidence interval
- Calculation of standard error of the sample mean
 - Relationship to standard deviation
- Finding the critical value for a t-distribution by using the distribution calculator https://adamspannbauer.github.io/stats-applets/#/studentt
- Calculation of confidence intervals using the formula sheet
- Understanding Data Analysis output

Topics to study for Exam 3

Chapter 15: Testing Hypotheses

- Hypotheses
 - Null hypothesis
 - Understand the null always has the sign of equality (=)
 - Alternative hypotheses
 - Understand reasoning behind the three possible alternatives (≠, >,
 - One sided and two-sided
 - Ability to set the correct null and alternative hypotheses
 - Based on the parameter (p or μ)
 - From a word problem
- Interpretation of a p-value in general
- How the p-value is used to decide about the null hypothesis
 - When to Reject
 - When to Fail to Reject
- Reasoning of hypothesis testing
 - o Conditions to check for a proportion (one-sample z-test)
 - Randomization
 - 10% condition
 - Success/Failure condition
 - Conditions to check for a mean (one-sample t-test)
 - Randomization
 - 10% condition
 - Nearly Normal condition
- Test statistics calculation and interpretation
 - Mechanics of calculation using the formula sheet
- Finding p-value of test statistic and the alternative hypothesis
 - Using an online calculator to find a p-value
 - Using Data Analysis output to find a p-value
 - How to decide about the null hypothesis based on p-value
- Relationship of hypothesis tests with confidence intervals
 - Both are built on same formulas/conditions
 - $_{\odot}~$ A (1-a)100% confidence interval can be interpreted as the set of all null hypothesized values that one would not reject in a two-side test with an alpha level of α
- Knowing the threshold for the null hypothesis is called the Alpha level (Level of significance)
- Understand what is to be reported for a hypothesis test
 - Decision about the null hypothesis:
 - reject the null hypothesis
 - fail to reject the null hypothesis.
 - Alpha level (level of significance).
 - o P-value
 - Conclusion of the hypothesis test

Topics to study for Exam 3

Chapter 16: More about Tests and Intervals

- Interpretation of a p-value in general
 - Interpretation of large and small p-values
 - o A sufficiently small p-value could mean
 - (1) that the null hypothesis is true and data was observed that is very improbable under this hypothesis or (2) that the null hypothesis is false
 - We choose to believe (2) and reject the null hypothesis
- Alpha levels
 - Knowing when something is statistically significant
- Practical vs. statistical significance
- Errors of a hypothesis test
 - Type I error
 - a = alpha = probability of making a Type I error
 - Type II error
 - β = beta = probability of making a Type II error
- The severity of a type of error is based on context of the problem
- The three things that determine what β is:
 - Effect size (or, just "how false" is the null hypothesis?)
 - Chosen alpha level (a)
 - Sample size (n)
- Trade-offs between alpha and beta
 - Decreasing the probability of both errors can be done only by increasing the sample size
- Power
 - ο 1-β
 - o Probability of correctly rejecting a false null hypothesis

Chapter 17: Comparing Means for Independent Samples

- Understand the parameter of a difference of two means (μ1- μ 2)
- Conditions to check when comparing means
 - Check for both groups
 - Randomization
 - 10% condition
 - Nearly normal condition
 - Check between the groups
 - The groups must have been selected independently of each other
- Standard error for the difference of sample means
 - Relationship to standard deviation
- Degrees of freedom calculation
 - How to calculate degrees of freedom for two means using http://volweb.utk.edu/~ccwiek/TwoSampleDoF.html
 - Find the degrees of freedom from Data Analysis output
- Confidence Intervals

Topics to study for Exam 3

- Finding the critical value for a t-distribution by using the distribution calculator https://adamspannbauer.github.io/stats-applets/#/studentt
- o Calculations using the formula sheet
- o Finding the Upper and Lower limits on JMP output
- o Interpretation of the confidence interval
- t-test for the difference of two means
- Setting up null and alternative hypotheses from a word problem
- Test statistics calculation and interpretation
 - Mechanics of calculation using the formula sheet
- Interpreting a hypothesis test using JMP output
- Conclusion of a hypothesis test of the difference of two means

Chapter 19: Comparing Counts

- Chi-Square (χ^2) test of independence
- Hypotheses for Chi-square test
 - Null
 - Alternative
 - Setting them up from a word problem
- Conditions to check
 - The data are counts from categorical data
 - Randomization
 - o 10% condition
 - Expected cell counts must all be at least 5
- Calculations
 - o Row, column and grand totals
 - Expected cell counts
 - o Cell Chi-square
 - Chi-square test statistic
 - What it means when this is large
 - Row percentages (calculate from data)
- If the null hypothesis is rejected, being able to explain the nature of the association from the visualization and/or the Row percentages
- p-value interpretation
- Conclusion of a Chi-Square (χ^2) test of independence
- Being able to read the output from the following online calculator: https://adamspannbauer.github.io/stats-applets/#/chisquare
- Chi-square and causation
- Interpreting Data Analysis output

Stat 201 – Fall 2025 Topics to study for Exam 3

Tools and Techniques

- Be able to select the correct tool (from ALL the tools covered in the course) to address a particular problem or situation.
- You won't be expected to actually demonstrate proficiency with the tools if they
 were from Exam 1 or Exam 2, just know which tool is the right one for the job!
- Expect a few multiple-choice questions on this topic.