

Statistics 201 Exam 1 – Practice Exam
Spring 2026
Chapters 01 - 06
With KEY

Disclaimer:

This practice exam is provided solely for the purpose of familiarizing you with the format and style of the Stat 201 exams. There is no explicit or implicit guarantee that the upcoming exam will ask similar questions. If you use the practice exam as your only tool to help you prepare for the upcoming exam, you most likely will not do well on the exam. You should still do the things you would have done if you did not have access to this practice exam, such as re-read the text, go over your class notes, and look at the list of exam topics provided and make sure that you understand all the concepts listed within it.

NOTE: These questions come from actual older exams. As such, the points on this practice exam may total more than 100 points.

100 Score

1. A study of potential age discrimination considered promotions among middle managers in a large company.

	Age		Total
	Up to 39	40 and Over	
Promoted	38	43	81
Not Promoted	82	88	170
Total	120	131	251

i) (2 points) What percent of employees were promoted?

$$\frac{81}{251} \times 100\% = 32.27\%$$

ii) (2 points) What percent of employees up to age 39 were promoted?

$$\frac{38}{120} \times 100\% = 31.67\%$$

iii) (2 points) What percent of employees were 40 and over?

$$\frac{131}{251} \times 100\% = 52.19\%$$

iv) (2 points) What percent of promoted employees were 40 and over?

$$\frac{43}{81} \times 100\% = 53.09\%$$

2. The demand for bottled water increases during hurricane season in Florida. The number of 1-gallon bottles of water sold for a random sample of $n=9$ hours in one store during hurricane season is:

64, 80, 74, 85, 82, 63, 67, 65, 75

i) (3 points) What is the average hourly number of 1-gallon bottles of water sold?

$$\bar{y} = \frac{\sum y}{n} = \frac{655}{9} = 72.78$$

ii) (3 points) What is the median number of 1-gallon bottles of water sold?

63, 64, 65, 67, 74, 75, 80, 82, 85
Median = 74

iii) (2 points) Partial JMP output is provided below. From this output, calculate the IQR of these data.

$$\text{IQR} = \text{Q3} - \text{Q1} = 81 - 64.5 = 16.5$$

Five Number Summary		
Percentile	Name	Value
100	Maximum	85
99.5		85
97.5		85
90		85
75	Q3	81
50	Median	
25	Q1	64.5
2.5		63
0.5		63
0	Minimum	63

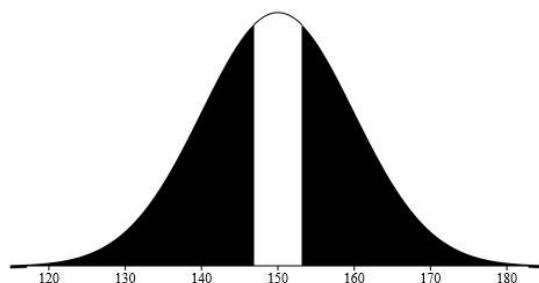
3. Suppose the number of minutes a customer is put on hold at a particular software company's technical support call center is approximately normally distributed, with a mean of 4.9 minutes and a standard deviation of 1.4 minutes. Betty called this call center and was on hold for 7.5 minutes.

$$\mu = 4.9 \text{ minutes} \text{ & } \sigma = 1.4 \text{ minutes}$$

i) (2 points) Calculate the z-score for Betty's hold time.

$$z = \frac{y - \mu}{\sigma} = \frac{7.5 - 4.9}{1.4} = 1.86$$

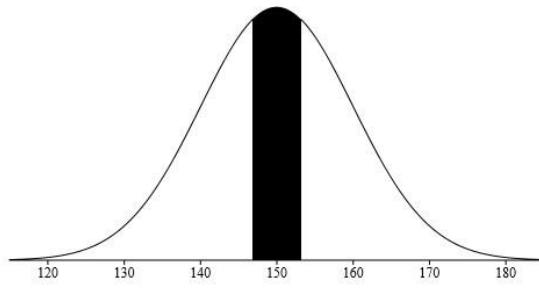
ii) (3 points) Interpret the number you calculated in part (i) above. Don't comment on the magnitude of this number, rather explain what this number means. [Note: If you have no answer for part (i), use 2.34, which is NOT the correct answer to part (i)]


Betty's hold time was 1.86 standard deviations above average

iii) (2 points) Another customer (David) called the same technical support call center and had a hold time that had a z-score of -0.55. The percent of customers that wait longer than David is approximately (circle the best answer):

- a) 97.5%
- b)** 71%
- c) 50%
- d) 29%
- e) 2.5%
- f) 0.3%

4. (3 points) The reaction time of a professional hockey goalie was measured many times, and the distribution of these reaction times was approximately normally distributed, with an average of 150 milliseconds and a standard deviation of 10 milliseconds. What is the 75th percentile of this hockey goalie's reaction times? Use the correct screen shot below from our Normal Curve Calculator to answer this question (**hint**: only one of the images below can help you answer this question).

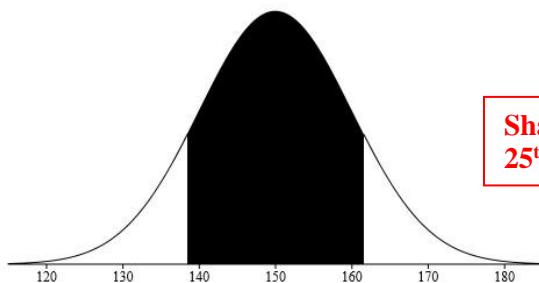

Area from a value (Use to compute p from Z)
 Value from an area (Use to compute Z for confidence intervals)

Specify Parameters:

Area 0.75
 Mean 150
 SD 10

Results:

Recalculate
 Above
 Below
 Between
 Outside 146.818 and 153.182

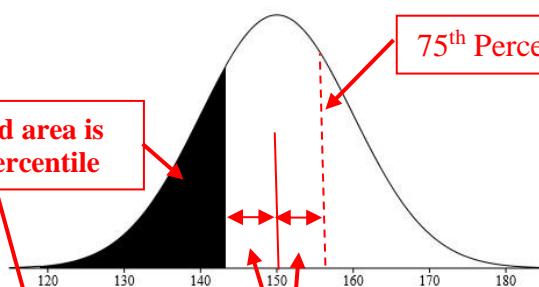

Area from a value (Use to compute p from Z)
 Value from an area (Use to compute Z for confidence intervals)

Specify Parameters:

Area 0.25
 Mean 150
 SD 10

Results:

Recalculate
 Above
 Below
 Between 146.818 and 153.182
 Outside


Area from a value (Use to compute p from Z)
 Value from an area (Use to compute Z for confidence intervals)

Specify Parameters:

Area 0.75
 Mean 150
 SD 10

Results:

Recalculate
 Above
 Below
 Between 138.496 and 161.504
 Outside

Area from a value (Use to compute p from Z)
 Value from an area (Use to compute Z for confidence intervals)

Specify Parameters:

Area 0.25
 Mean 150
 SD 10

Results:

Recalculate
 Above
 Below 143.258
 Between
 Outside

Same distance from mean

Distance from Mean to 25th percentile: $150 - 143.2 = 6.742$

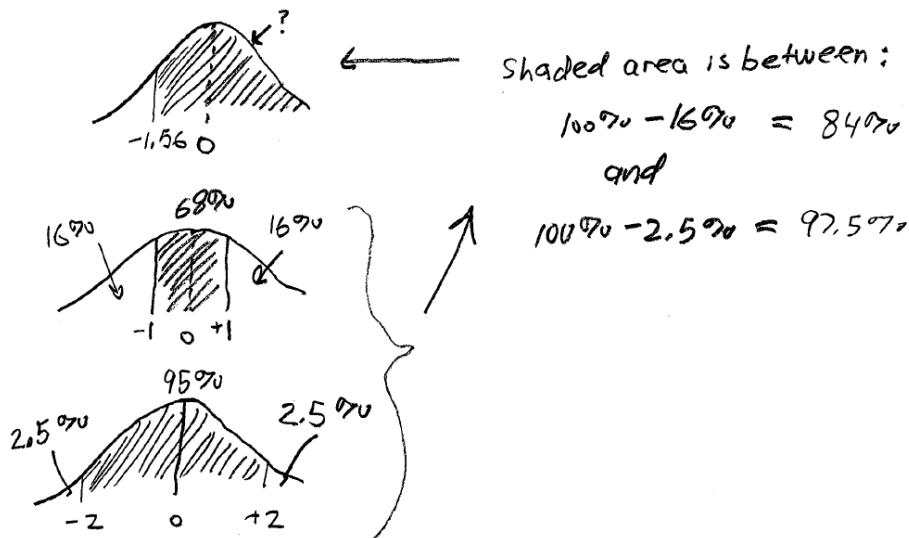
75th Percentile will be same distance but ABOVE the mean: $150 + 6.742 = 156.742$

5. A particular brand of cell phone has a battery that will last, under normal conditions, 2.5 years on average, with a standard deviation of 0.32 years. The distribution of these lifetimes is approximately normally distributed.

$$\mu = 2.5 \text{ years} \text{ & } \sigma = 0.32 \text{ years}$$

i) (2 points) Calculate the z-score for a battery that lasts 2 years under normal conditions.

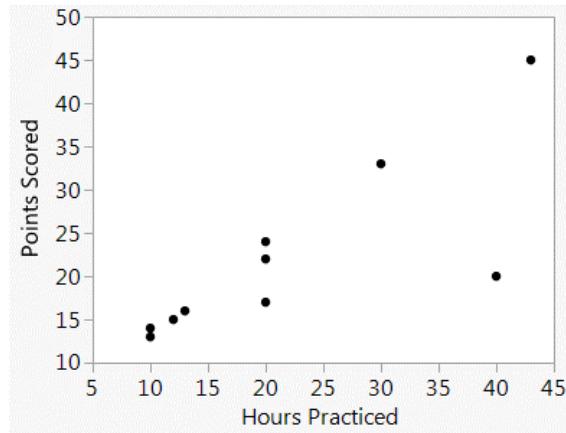
$$z = \frac{y - \mu}{\sigma} = \frac{2 - 2.5}{0.32} = -1.56$$


1.56 standard deviations below average

ii) (5 points) What percent of this brand of batteries can be expected to last 2 years or more under normal conditions?

Without the normal curve calculator, you can't give an exact answer here. Base your answer on the 68-95-99.7 rule, and your answer to part [i] above. Give as narrow of an interval as you can that contains the exact answer. Fill in the blanks below. Also, show your work (and/or reasoning) below.

- (Note 1: if you have a calculator that could give you the exact answer, DO NOT use that capability! Use only the 68-95-99.7 rule.)
- (Note 2: if you have NO answer for part [i] above, use -1.2 as your answer there, which is NOT the correct answer to part [i]).


“The exact answer must be between 84% and 97.5%.”

6. (4 points) A gas station is trying to increase food sales inside the store. Many customers pay at the pump and leave. The gas station begins collecting data hoping to discover something that will bring customers inside after they pump their gas. A random sample of the data set is shown below. Above each of the eight columns, write a **C** if that variable is categorical, **Q** if that variable is quantitative, or **I** if that variable is an identifier variable.

	I	C	Q	C	C	C	Q	C
Transaction number	Type of gas	Number of gallons	Pay at pump?	Inside food sale?	Type of payment	Gas purchase in dollars	Day of week	
9853	premium	22	y	n	Visa	85.58	Mon	
9211	diesel	26	y	n	Am Exp	110.5	Tues	
8875	regular	19	y	y	Visa	70.11	Tues	
8824	regular	21	y	y	Visa	77.49	Fri	
8313	regular	14	y	y	MasterCard	51.66	Wed	
7699	premium	22	n	n	cash	85.8	Wed	
7645	diesel	45	y	y	Am Exp	191.25	Sat	
3145	diesel	38	y	n	Am Exp	161.5	Sat	
2588	regular	17	n	y	Visa	62.73	Sun	
2499	regular	22	n	n	cash	81.18	Sat	
2325	premium	15	y	n	MasterCard	58.35	Fri	
2291	diesel	22	y	n	MasterCard	92.4	Mon	
2078	regular	14	y	y	Visa	51.66	Thur	
1843	regular	35	y	n	Visa	129.15	Thur	
2103	regular	25	n	y	cash	92.25	Sat	

7. A high school football coach believes that the number of points scored in each game is correlated with how many hours his players spend practicing the week before. He records the hours practiced before 10 games and the points his team scored in those games.

i) (6 points) There are 3 conditions that must be checked before calculating a correlation coefficient
(r). List each condition, and briefly comment on whether or not each condition is met in this case.

Condition 1 is: **2 Quantitative Variables**

Is condition 1 met? (Circle one): Yes No
Briefly explain your answer:

Hours and points are both quantitative variables

Condition 2 is: **Straight Enough**

Is condition 2 met? (Circle one): Yes No
Briefly explain your answer:

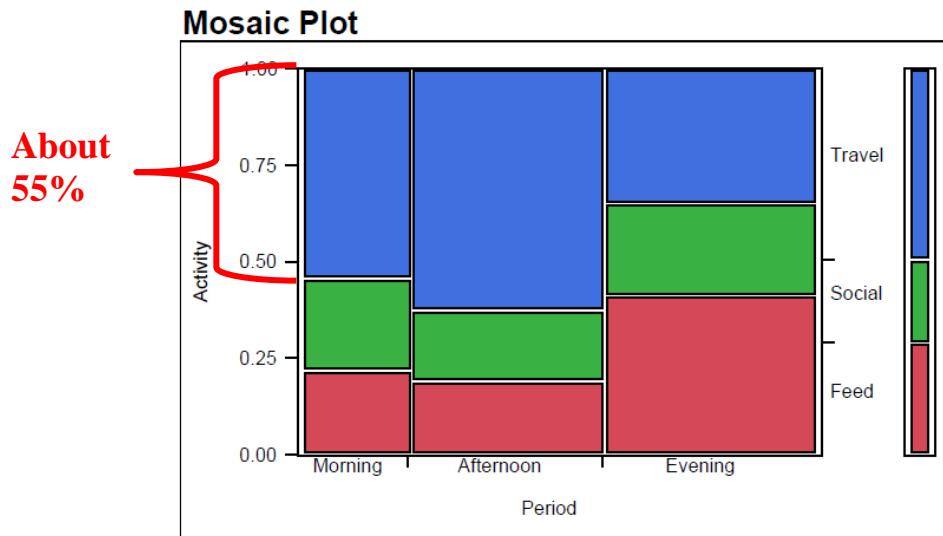
Overall, the relationship is linear (and not a “curved” relationship).

Condition 3 is:

Is condition 3 met? (Circle one): Yes No
Briefly explain your answer:

There is an outlier in the lower right of the scatterplot

Hours practiced ≈ 40


Points scored ≈ 20

Question 7 (continued)

ii) (2 points) Suppose that the correlation coefficient, r is calculated using all of the data in the scatter plot. In one week, the players practiced 40 hours and scored 20 points. How would the removal of this point change the values of r ? Circle the best answer:

- a) r would be unchanged
- b) r would get closer to -1
- c) r would get closer to 0
- d) r would get closer to +1
- e) The impact on r cannot be determined

8. Are Icelandic dolphins' behavioral activities related to a specific period of the day? Icelandic marine biologists observed the behavior (categorized into 3 behaviors: Travel, Social, Feeding) and time of day (categorized into 3 distinct periods: Morning, Afternoon, and Evening) of 1200 dolphins. They hoped to observe a relationship between these two variables over the course of 2 years. Below is a mosaic plot of the collected data:

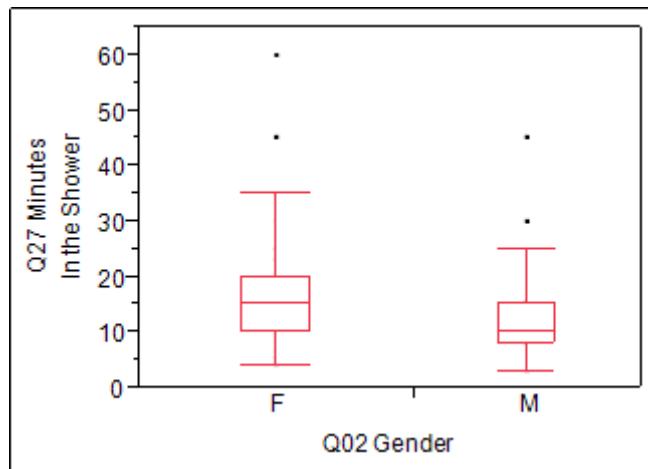
i) (2 points) Based on the mosaic plot, approximately what percent of these dolphins' mornings were spent traveling?

≈55%

ii) (2 points) Based on the mosaic plot, at what time of the day were the Icelandic dolphins observed the least? Briefly explain how you came to this conclusion.

Morning, the width of the morning bars is the smallest of the 3 time periods

iii) (1 point) Is there a relationship between the variables Activity and Period? CIRCLE your answer.


Relationship

No Relationship

iv) (3 points) Make reference to the mosaic plot to justify your choice above.

- **The heights of the bars within each time period are different for different time periods**
- **The most traveled in the afternoons (≈60% of the time) but traveled much less in the evenings (≈35% of the time)**

9. Who takes longer showers? The following boxplots show the shower times in minutes for Stat 201 students, as reported in a previous survey.

i) (2 points) The distribution of the male shower times is (Circle the BEST answer)

- a) Right-Skewed
- b) Left-Skewed
- c) Symmetric
- d) Unimodal
- e) Bimodal

ii) (2 points) What is the approximate range of shower times for these females?

$$\begin{aligned} \text{Min} &\approx 3 \\ \text{Max} &\approx 60 \\ \text{Range} &= \text{Max} - \text{Min} = 60 - 3 = 57 \text{ minutes} \end{aligned}$$

iii) (2 points) Which group has a higher median shower time? CIRCLE the best answer.

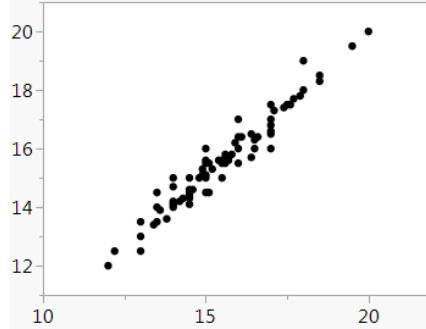
males **females** cannot be determined the median times are the same

iv) (2 points) 75% of males spend less than **15** minutes in the shower.

v) (2 points) What is the IQR (approximately) for the female shower times?

$$\begin{aligned} \text{Q1} &\approx 10 \\ \text{Q3} &\approx 20 \\ \text{IQR} &= \text{Q3} - \text{Q1} = 20 - 10 = 10 \text{ minutes} \end{aligned}$$

10. (2 points) Adding an outlier in a scatterplot will do which of the following to the correlation coefficient? (Circle the best answer)


- a) Increase the correlation coefficient
- b) Decrease the correlation coefficient
- c) Change the correlation coefficient from positive to negative
- d) Change the correlation coefficient from negative to positive
- e) All options above are possible

11. (2 points) When the correlation coefficient is close to +1, it indicates (Circle the best answer)

- a) changes in one variable cause changes in the other, but we don't know which one causes the other to change.
- b) changes in the variable on the x-axis cause changes in the variable on the y-axis.
- c) changes in the variable on the y-axis cause changes in the variable on the x-axis.
- d) nothing regarding the possible cause and effect relationship between the two variables.

12. (2 points) What is the most likely correlation coefficient for the scatterplot below?

- a) 1.00
- b) 0.98
- c) 0.50
- d) 0.00
- e) -0.50
- f) -0.98
- g) -1.00

13. (3 points) Which of these statements is inaccurate (Circle the best answer)?

- a) Large outliers can inflate the mean
- b) The IQR is a measure of distance between 75th and 25th percentile
- c) When measuring variation, the standard deviation should be used for normal data and IQR should be used for skewed data
- d) A data set skewed to the right will generally have a median below the mean
- e) The median is the average of all the data values

True/False Questions
Circle the best answer
(2 points each)

T F The normal model can be used to describe all distributions.

T F An observation with a z-score of 0.5 would be considered an outlier.

T F If all of the data in a skewed right data set are converted into z-scores, the distribution of these z-scores will be normally distributed.

T F The middle 50% of a data set will be within two standard deviations of the mean for normally distributed data.

T F When the correlation is above 0.95 or below -0.95, it is safe to conclude that changes in X cause changes in Y.

T F Bar charts are used to graphically display both quantitative and categorical variables.